Приложение В
(рекомендуемое)
В.1 Расчетные формулы стационарной теплопередачи в теплоизоляционных конструкциях
Поверхностная плотность теплового потока через плоские поверхности рассчитывается по формулам:
однослойная плоская стенка
; (В.1)
многослойная плоская стенка из слоев
. (В.2)
Линейная плотность теплового потока через цилиндрические поверхности рассчитывается по формулам:
однослойная цилиндрическая стенка
; (В.3)
многослойная цилиндрическая стенка из слоев
; (В.4)
где - поверхностная плотность теплового потока через плоскую теплоизоляционную конструкцию, Вт/м;
- температура среды внутри изолируемого объекта, °С;
- температура окружающей среды, °С;
- сопротивление теплоотдаче на внутренней поверхности стенки изолируемого объекта, м·°С/Вт;
- то же, на наружной поверхности теплоизоляции, м·°С/Вт;
- термическое сопротивление стенки изолируемого объекта, м·°С/Вт;
- то же, плоского слоя изоляции, м·°С/Вт;
- полное термическое сопротивление -слойной плоской изоляции;
- термическое сопротивление -го слоя, м·°С/Вт;
- линейная плотность теплового потока через цилиндрическую теплоизоляционную конструкцию, Вт/м;
- линейное термическое сопротивление теплоотдаче внутренней стенки изолируемого объекта, м·°С/Вт;
- то же, наружной изоляции, м·°С/Вт;
- линейное термическое сопротивление цилиндрической стенки изолируемого объекта, м·°С/Вт;
- то же, цилиндрического слоя изоляции, м·°С/Вт;
- полное линейное термическое сопротивление -слойной цилиндрической изоляции;
- линейное термическое сопротивление -го слоя, м·°С/Вт.
В уравнениях (В.1)-(В.4) сопротивления теплоотдаче и термические сопротивления стенок определяются по формулам:
; ; ; ; ; (В.5)*
; ; ; (В.6)
; ; (В.7)
________________
* Формула В.5 соответствует оригиналу. - Примечание изготовителя бахы данных.
где , - коэффициенты теплоотдачи внутренней поверхности стенки изолируемого объекта и наружной поверхности изоляции, Вт/(м·°С);
, , - коэффициенты теплопроводности соответственно материала стенки изолируемого объекта однослойной изоляции, изоляции -го слоя -слойной изоляции, Вт/(м·°С);
, , - толщина соответственно стенки изолируемого объекта, однослойной изоляции -го слоя -слойной изоляции, м;
, - внутренний и наружный диаметры стенки изолируемого объекта, м;
- наружный диаметр изоляции, м;
, - наружный и внутренний диаметры -го слоя -слойной изоляции, м.
Распределение температур в многослойной изоляции рассчитывается по формулам:
температуры на внутренней и наружной поверхностях стенки изолируемого объекта плоской формы:
; ; (В.8)
температура на наружной поверхности первого слоя изоляции, на границе первого и второго слоев
; (В.9)
и далее, начиная со второго слоя, на границах (-1)-го и -го слоев
; (В.10)
температура на наружной поверхности -слоя -слойной стенки:
. (В.11)
Распределение температур в цилиндрических многослойных изоляционных конструкциях рассчитывается по формулам:
; ; (В.12)
; (В.13)
; (В.14)
. (В.15)
Значения поверхностной и линейной плотности тепловых потоков, входящих в формулы (В.8)-(В.15), определяются по (В.1)-(В.4), а термические сопротивления - по (В.5)-(В.7).
При расчете многослойных конструкций по формулам (В.2), (В.4) необходимо знать коэффициенты теплопроводности изоляционных слоев. Поскольку они зависят от температуры должны быть известны средние температуры каждого слоя, для определения которых необходимо знать температуры на границах слоев. Для их расчета используется метод последовательных приближений, предусматривающий проведение нескольких расчетных операций.
На первом этапе для всех слоев средняя температура изоляции принимается равной полусумме температур внутренней и наружной среды, при этой температуре определяется теплопроводность всех теплоизоляционных слоев. Затем, по (2), (4) определяют значения или и по (В.8)-(В.11) для плоской и по (В.12)-(В.15) цилиндрической стенок рассчитывают температуры на границах слоев и средние температуры каждого слоя.
На втором этапе по найденным на первом этапе средним температурам слоев вновь определяют теплопроводность всех слоев, затем находят плотности потоков тепла и снова рассчитывают послойные температуры, и так далее до требуемой точности расчета. Например, до тех пор, пока послойные температуры на -м и ()-м шаге будут отличаться не более чем на 5%. В практических расчетах для этой цели необходимо проведение не более 3-4 расчетных операций.
В.2 Расчет тепловой изоляции оборудования и трубопроводов
В практических расчетах тепловой изоляции принимается ряд допущений, позволяющих использовать упрощенные расчетные формулы.
Сопротивление теплоотдаче от внутренней среды к внутренней поверхности стенки изолируемого объекта для жидких и газообразных сред является пренебрежимо малым в сравнении с термическим сопротивлением теплоизоляционного слоя и в практических расчетах может не учитываться.
Теплопроводность стенок изолируемого оборудования и трубопроводов, изготовленных из металла, в десятки раз превышает теплопроводность изоляции, поэтому термическим сопротивлением стенки также можно пренебречь без заметного снижения точности расчета.
С учетом указанных допущений в практических расчетах для определения теплового потока через изолированные стенки трубопроводов и оборудования используются следующие формулы:
для плоских поверхностей и цилиндрических диаметром более 2 м
; (В.16)
для трубопроводов диаметром менее 2 м
, (В.17)
где - коэффициент дополнительных потерь, учитывающий теплопотери через теплопроводные включения в теплоизоляционных конструкциях, обусловленных наличием в них крепежных деталей и опор (таблица В.1).
Таблица В.1- Значения коэффициента дополнительных потерь для трубопроводов
Тип изолируемого объекта |
Коэффициент |
Трубопроводы на открытом воздухе, в непроходных каналах, тоннелях и помещениях: |
|
а) стальные на подвижных опорах, условным проходом, мм: |
|
до 150 |
1,2 |
150 и более |
1,15 |
б) стальные на подвесных опорах |
1,05 |
в) неметаллические на подвижных и подвесных опорах |
1,7 |
Трубопроводы бесканальной прокладки |
1,15 |
Термическое сопротивление слоев тепловой изоляции и сопротивление внешней теплоотдаче в (В.16), (В.17) определяется по формулам (В.5), (В.6), в которых теплопроводность изоляции принимается по приложению Б, а коэффициент теплоотдачи на поверхности изоляции - по таблице В.2.
Таблица В.2 - Значения коэффициента теплоотдачи , Вт/(м·°С)
Изолированный объект |
В закрытом помещении |
На открытом воздухе при скорости ветра, м/с |
|||
Покрытия с низким коэффициентом излучения |
Покрытия с высоким коэффициентом излучения |
||||
5 |
10 |
15 |
|||
Горизонтальные трубопроводы |
7 |
10 |
20 |
26 |
35 |
Вертикальные трубопроводы, оборудование, плоская стенка |
8 |
12 |
26 |
35 |
52 |
К ним относятся покрытия из оцинкованной стали, листов алюминиевых сплавов и алюминия с оксидной пленкой. |
При расчете тепловой изоляции объектов, расположенных под землей, учитывается их тепловое взаимодействие с массивом окружающего грунта.
Плотность теплового потока через теплоизоляционные конструкции, граничащие с грунтом, определяется по формулам (В.1)-(В.4), в которых термические сопротивления внешней теплоотдаче и заменяются термическим сопротивлением грунта.
В общем случае термическое сопротивление грунта зависит от конфигурации и расположения изолируемого объекта в массиве грунта, его температуры и теплопроводности, что влияет на распределение температур и тепловых потоков в теплоизоляционном слое.
В инженерных расчетах принимается допущение об одномерности температурного поля в теплоизоляционном слое, что позволяет с достаточной для практики точностью использовать формулы (В.5)-(В.7) для расчета термического сопротивления плоских и цилиндрических теплоизоляционных конструкций подземных объектов.
В.2.1 Расчет толщины тепловой изоляции по нормированной плотности теплового потока
Расчет толщины тепловой изоляции по нормированной плотности теплового потока - , для однослойных конструкций выполняется по следующим формулам.
Для плоских и цилиндрических поверхностей с диаметром 1,4 м и более используется формула
; (В.18)
Таблица В.3 - Ориентировочные значения , м·°С/Вт
Условный диаметр трубы, мм |
Внутри помещений |
На открытом воздухе |
|||||||
Для поверхностей с малым коэффициентом излучения |
Для поверхностей с высоким коэффициентом излучения |
||||||||
при температуре теплоносителя, °С |
|||||||||
100 |
300 |
500 |
100 |
300 |
500 |
100 |
300 |
500 |
|
32 |
0,50 |
0,35 |
0,30 |
0,33 |
0,22 |
0,17 |
0,12 |
0,09 |
0,07 |
40 |
0,45 |
0,30 |
0,25 |
0,29 |
0,20 |
0,15 |
0,10 |
0,07 |
0,05 |
50 |
0,40 |
0,25 |
0,20 |
0,25 |
0,17 |
0,13 |
0,09 |
0,06 |
0,04 |
100 |
0,25 |
0,19 |
0,15 |
0,15 |
0,11 |
0,10 |
0,07 |
0,05 |
0,04 |
125 |
0,21 |
0,17 |
0,13 |
0,13 |
0,10 |
0,09 |
0,05 |
0,04 |
0,03 |
150 |
0,18 |
0,15 |
0,11 |
0,12 |
0,09 |
0,08 |
0,05 |
0,04 |
0,03 |
200 |
0,16 |
0,13 |
0,10 |
0,10 |
0,08 |
0,07 |
0,04 |
0,03 |
0,03 |
250 |
0,13 |
0,10 |
0,09 |
0,09 |
0,07 |
0,06 |
0,03 |
0,03 |
0,02 |
300 |
0,11 |
0,09 |
0,08 |
0,08 |
0,07 |
0,06 |
0,03 |
0,02 |
0,02 |
350 |
0,10 |
0,08 |
0,07 |
0,07 |
0,06 |
0,05 |
0,03 |
0,02 |
0,02 |
400 |
0,09 |
0,07 |
0,06 |
0,06 |
0,05 |
0,04 |
0,02 |
0,02 |
0,02 |
500 |
0,075 |
0,065 |
0,06 |
0,05 |
0,045 |
0,04 |
0,02 |
0,02 |
0,016 |
600 |
0,062 |
0,055 |
0,05 |
0,043 |
0,038 |
0,035 |
0,017 |
0,015 |
0,014 |
700 |
0,055 |
0,051 |
0,045 |
0,038 |
0,035 |
0,032 |
0,015 |
0,013 |
0,012 |
800 |
0,048 |
0,045 |
0,042 |
0,034 |
0,031 |
0,029 |
0,013 |
0,012 |
0,011 |
900 |
0,044 |
0,041 |
0,038 |
0,031 |
0,028 |
0,026 |
0,012 |
0,011 |
0,010 |
1000 |
0,040 |
0,037 |
0,034 |
0,028 |
0,026 |
0,024 |
0,011 |
0,010 |
0,009 |
2000 |
0,022 |
0,020 |
0,017 |
0,015 |
0,014 |
0,013 |
0,006 |
0,006 |
0,005 |
Примечания |
Для однослойных цилиндрических поверхностей с диаметром менее 1,4 м используется формула
. (В.19)
Коэффициент дополнительных тепловых потерь через опоры трубопроводов в расчете толщины тепловой изоляции по нормативной плотности теплового потока принимается равным 1.
При расчете по формуле (В.19) предварительно определяют величину , где . Приближенные значения принимаются по таблице В.3.
Затем находят величину и определяют требуемую толщину изоляции по формуле
. (В.20)
Для двухслойных теплоизоляционных конструкций расчет толщины слоев по нормированной плотности теплового потока производится в следующей последовательности.
В случае, когда максимальная температура применения одного из выбранных теплоизоляционных материалов ниже температуры стенки изолируемого объекта в двухслойных теплоизоляционных конструкциях в качестве первого слоя на изолируемую поверхность устанавливается материал с более высокой допустимой температурой применения.
Толщина первого слоя определяется из условия, чтобы температура между обоими слоями , не превышала максимальной температуры применения основного изоляционного материала.
Для плоской стенки и цилиндрических объектов с диаметром 2 м и более для расчета толщины первого слоя применяется формула
. (В.21)
Для второго слоя применяется формула (В.18), в которую вместо значения подставляется .
При расчете цилиндрических объектов с диаметром менее 2 м - аналогично однослойной конструкции по уравнению
, (В.22)
в котором , определяют величину , затем находят и толщину первого слоя, м:
.
Толщина второго слоя определяется с помощью формулы (В.19), в которой вместо значения подставляется значение , а вместо
.
Определив находят , а затем толщину изоляции второго слоя, м:
. (В.23)
Расчет требуемой толщины тепловой изоляции по нормативной плотности теплового потока может быть выполнен методом последовательных приближений. Последовательность расчета для однослойной цилиндрической конструкции следующая.
Задаваясь начальным значением толщины изоляции , м, определяемой требуемой точностью расчета, например, 0,001 м, с помощью последовательных шагов 1, 2, 3, 4, ..., для толщины изоляции: ; ; , ..., производят вычисление линейной плотности тепловых потоков ; ; …; по уравнению
. (В.24)
На каждом шаге вычислений производится сравнение с заданным значением нормативного удельного потока . При выполнении условия
(В.25)
вычисления заканчиваются, а найденная величина является искомой, обеспечивающей заданную величину тепловых потерь.
Расчетные параметры при определении толщины изоляции по нормируемой плотности теплового потока следует принимать по 6.1.1-6.1.6 настоящего свода правил.
В.2.1 (Измененная редакция, Изм. N 1).
В.2.2 Расчет толщины изоляции по заданному снижению (повышению) температуры вещества, транспортируемого трубопроводами
Требуемое полное термическое сопротивление изоляции трубопровода длиной , м, для обеспечения заданного снижения температуры транспортируемого по нему вещества от начальной до конечной при расходе вещества , кг/ч, теплоемкостью , кДж/(кг·°С) определяется из выражений:
при , ; (В.26)
при , , (В.27)
где - расчетная температура окружающей среды, °С.
Для определения требуемой толщины изоляции , м, по найденным значениям и используется формула
. (В.28)
Принимая приближенные значения по таблице В.3 и определяя по формуле (В.28) , находят величину и затем по формуле (В.20) толщину изоляции
.
Расчетные параметры при определении толщины тепловой изоляции по заданной величине снижения (повышения) температуры транспортируемого вещества принимаются по 6.4 настоящего свода правил.
В.2.3 Расчет толщины тепловой изоляции по заданной температуре наружной поверхности
Определение толщины изоляции по заданной температуре ее наружной поверхности производится в том случае, когда изоляция нужна как средство, предохраняющее обслуживающий персонал от ожогов.
Расчет толщины тепловой изоляции выполняется по формулам:
для плоских теплоизоляционных конструкций
; (В.29)
для цилиндрических
, (В.30)
где ориентировочное значение принимается по таблице В.3.
.
Рассмотренный метод является приближенным. Более точные результаты могут быть получены методом последовательных приближений.
Расчет выполняется по формуле
. (В.31)
Задаваясь начальным значением толщины изоляции , м, определяемым требуемой точностью расчета, например, 0,001 м, последовательными шагами 1, 2, 3, ...., для толщин изоляции: ; ; , ..., производится вычисление величин:
; ; ; …; по уравнению (B.31).
На каждом шаге вычислений производится сравнение с заданным значением . При выполнении условия
(B.32)
вычисления заканчиваются, а найденная величина является с точностью до 1 мм заданной, обеспечивающей требуемую температуру поверхности изоляции.
Расчетные параметры при расчете толщины тепловой изоляции по заданной температуре поверхности принимаются по 6.7.
В.2.4 Расчет толщины изоляции, предотвращающей конденсацию влаги из воздуха на ее поверхности
Данный расчет производится для изолированных объектов, расположенных в помещениях и содержащих вещества с температурой ниже температуры окружающего воздуха.
В этом случае изоляция должна обеспечивать требуемый расчетный перепад между температурами наружного воздуха и поверхностью изоляции (), при котором исключается конденсация влаги из воздуха (таблица В.4).
Таблица В.4 - Расчетный перепад , °С
, °C |
Относительная влажность воздуха , % |
|||||
40 |
50 |
60 |
70 |
80 |
90 |
|
10 |
13,4 |
10,4 |
7,8 |
5,5 |
3,5 |
1,6 |
15 |
14,2 |
10,9 |
9,1 |
5,7 |
3,6 |
1,7 |
20 |
14,8 |
11,3 |
8,4 |
5,9 |
3,7 |
1,8 |
25 |
15,3 |
11,7 |
8,7 |
6,1 |
3,8 |
1,9 |
30 |
15,9 |
12,2 |
9,0 |
6,3 |
4,0 |
2,0 |
Расчет выполняется по формулам:
для плоской поверхности
; ; (В.33)
для цилиндрической поверхности
; . (В.34)
Требуемая толщина изоляции определяется по методике, изложенной в В.2.3.
В расчетах температуру наружной среды следует принимать равной температуре воздуха в помещении.
Температуру внутренней среды и относительную влажность воздуха в помещении принимают в соответствии с техническим заданием на проектирование.
Коэффициент теплоотдачи к наружной поверхности изоляции принимается для поверхностей с низким коэффициентом излучения - 5 Вт/(м·°С), для поверхностей с высоким коэффициентом излучения - 7 Вт/(м·°С) (см. примечание к таблице В.2).
В.2.5 Расчет тепловой изоляции паропроводов по заданным параметрам пара
Для паропроводов насыщенного пара заданными параметрами являются давление, температура и допустимая доля конденсата в паропроводе. Толщина тепловой изоляции рассчитывается по следующей формуле
, (В.34а)
где - допустимое количество конденсата по длине паропровода, кг/с;
- расчетная длина паропровода, принимаемая с учетом тепловых потерь через опоры, арматуру и фланцевые соединения, м;
- скрытая теплота конденсации, кДж/кг.
Для паропроводов перегретого пара заданными параметрами являются начальные и конечные температура и давление пара и допустимое падение температуры по длине паропровода. Требуемая толщина тепловой изоляции определяется по следующей формуле
, (В.34б)
где - средняя температура пара в паропроводе, равная среднеарифметическому значению начальной и конечной температуры пара, °С;
, - удельная энтальпия пара, соответственно, в начале и конце паропровода, определяемая по таблицам термодинамических свойств воды и водяного пара при заданных температуре и давлении перегретого пара в начале и конце паропровода, кДж/кг;
- массовый расход пара в паропроводе, кг/с;
- внутренний диаметр паропровода, м.
Уравнения (В.34а), (В.34б) решаются методом последовательных приближений. Толщина изоляции вычисляется по формуле (В.20).
В.2.6. Расчет тепловой изоляции с целью предотвращения конденсации влаги на внутренних поверхностях газоходов
Для газоходов прямоугольного сечения и цилиндрических, диаметром более 2 м, расчет требуемой толщины изоляции выполняется по формуле
, (В.34в)
где - температура внутренней поверхности стенки газохода, °С;
- коэффициент теплоотдачи от газа к внутренней поверхности стенки газохода, Вт/(м·°С);
Для газоходов диаметром менее 2 м, расчет выполняется по формуле
, (В.34г)
где - внутренний диаметр стенки газохода.
Температура внутренней стенки газохода устанавливается в техническом задании на проектирование тепловой изоляции в зависимости от температуры и влажности транспортируемого газа. Выпадение конденсата из газа, протекающего в газоходе, происходит при условии, что температура внутренней стенки газохода оказывается ниже, чем температура конденсации влаги из газа ("точка росы") при заданной его температуре и влажности. Поэтому расчетная температура внутренней стенки газохода принимается на 2°С-3°С выше температуры конденсации ("точки росы") при заданной температуре и влажности транспортируемого газа.
Коэффициент теплоотдачи рассчитывается по эмпирическим (критериальным) формулам теплообмена при вынужденном движении газа (жидкости) в трубах и каналах прямоугольного сечения в зависимости от температуры и скорости движения газа и режима течения, определяемого отношением длины газохода к его диаметру.
При турбулентном режиме движения газа в газоходе расчет выполняется по формуле
, (В.34д)
где - критерий Нуссельта;
- критерий Рейнольдса;
- критерий Прандтля;
- скорость движения газа в газоходе, м/с;
- диаметр трубопровода или эквивалентный диаметр канала, м;
, , - соответственно, коэффициент теплопроводности [Вт/(м·К)], кинематическая вязкость (м/с) и коэффициент температуропроводности газа (м/с), принимаемые по таблицам физических свойств газов.
При ламинарном и переходном режимах течения газа (при отношении длины газохода к его диаметру - менее 50), к коэффициенту теплоотдачи вводится поправочный множитель =1,3 при значении =1,010 и =1,1 при значении =1050.
Уравнение (В.34г) решается методом последовательных приближений. Толщина изоляции вычисляется по формуле (В.20).
В.2.7 Расчет тепловой изоляции трубопроводов с целью предотвращения замерзания содержащейся в них жидкости при остановке ее движения
Расчет толщины изоляции трубопровода по заданному времени отсутствия движения жидкости Z основан на уравнении теплового баланса, в соответствии с которым тепло, аккумулированное в жидкости, и тепло, выделяющееся при замерзании некоторой части жидкости (25% сечения трубопровода), приравнивается количеству тепла, отдаваемого изолированным трубопроводом в окружающую среду за период остановки движения жидкости.
Процесс теплообмена при охлаждении и замерзании жидкости в трубопроводе является нестационарным. Расчет требуемой в этом случае толщины тепловой изоляции с достаточной для инженерной практики степенью точности выполняется по формулам стационарного теплообмена.
Толщина изоляционного слоя определяется по формуле
, (В.34е)
где - температура жидкости до остановки ее движения, °С;
- температура замерзания жидкости, °С;
- температура окружающего воздуха, °С;
Z - заданное время остановки движения жидкости, ч;
- объем жидкости, м;
- плотность жидкости, кг/м;
- удельная теплоемкость жидкости, кДж/(кг·°С);
- объем материала стенки трубопровода, м;
- плотность материала стенки, кг/м;
- удельная теплоемкость материала стенки, кДж/(кг·°С);
0,25 - допустимая доля замерзания жидкости (25% от объема);
- скрытая теплота замерзания жидкости, кДж/кг;
- коэффициент, учитывающий потери тепла через опоры.
Уравнение (В.34 е) решается методом последовательных приближений. Толщина изоляции вычисляется по формуле (В.20).
В.2.5-В.2.7 (Введены дополнительно, Изм. N 1).
В.3 Расчет тепловой изоляции трубопроводов тепловых сетей
В.3.1 Надземная прокладка
Тепловые потери через изолированную поверхность подающих и обратных трубопроводов тепловых сетей при надземной прокладке, при известной толщине изоляции , м, следует определять по формуле (В.17), а термические сопротивления, входящие в эту формулу, - по (В.6). В качестве температур внутренней и наружной сред и принимают расчетные температуры теплоносителя и окружающего воздуха, а коэффициент теплоотдачи - по таблице В.2.
При определении толщины изоляции трубопроводов тепловых сетей по нормированным значениям плотности тепловых потоков от подающих и обратных теплопроводов используется методика расчетов, изложенная в разделе В.2.1. При этом расчетные температуры теплоносителя в подающем и обратном трубопроводе принимают по таблице В.5.
Таблица В.5 - Среднегодовые температуры теплоносителя в водяных тепловых сетях, °С
Трубопровод |
Расчетные температурные режимы, °С |
||
95-70 |
150-70 |
180-70 |
|
Подающий |
65 |
90 |
110 |
Обратный |
50 |
50 |
50 |
Расчетную температуру наружной среды принимают: при круглогодичной работе тепловой сети - среднегодовую температуру наружного воздуха, при работе только в отопительный период - среднюю температуру отопительного периода. Расчетный коэффициент теплоотдачи - по таблице В.2.
В.3.2 Подземная прокладка в непроходных каналах
Тепловые потери через изолированную поверхность двухтрубных тепловых сетей, прокладываемых в непроходном канале шириной и высотой , м, на глубине , м, от поверхности земли до оси канала определяются по формуле
. (В.35)
Температура воздуха в канале определяется по формуле
, (В.36)
где ; ; (В.37)
; ; (В.38)
, (В.39)
здесь , - линейные плотности теплового потока от подающего и обратного трубопроводов, Вт/м;
, - наружные диаметры подающего и обратного трубопроводов, м;
, - температуры подающего и обратного трубопроводов, °С;
- коэффициент дополнительных потерь (таблица В.1);
, - термические сопротивления изоляции подающего и обратного трубопроводов, м·°С/Вт;
, - термические сопротивления теплоотдаче от поверхности изоляции подающего и обратного трубопроводов, м·°С/Вт;
- термическое сопротивление теплоотдаче от воздуха к поверхности канала, м·°С/Вт;
, - высота и ширина канала, соответственно, м;
- коэффициент теплоотдачи в канале, принимается равным 11 Вт/(м·°С);
- теплопроводность изоляции в конструкции, Вт/(м·°С);
, - толщины изоляции подающего и обратного трубопроводов, м;
- термическое сопротивление грунта, Вт/(м·°С), определяется по формуле
; (В.40)
- теплопроводность грунта, Вт/(м·°С), таблица В.6.
- глубина заложения, расстояние от оси трубы до поверхности земли, м.
Таблица В.6 - Теплопроводность грунта
Вид грунта |
Средняя плотность, кг/м |
Весовое влагосодержание грунта, % |
Коэффициент теплопроводности, Вт/(м·°С) |
Песок |
1480 |
4 |
0,86 |
1600 |
5 |
1,11 |
|
15 |
1,92 |
||
23,8 |
1,92 |
||
Суглинок |
1100 |
8 |
0,71 |
15 |
0,9 |
||
1200 |
8 |
0,83 |
|
15 |
1,04 |
||
1300 |
8 |
0,98 |
|
15 |
1,2 |
||
1400 |
8 |
1,12 |
|
15 |
1,36 |
||
20 |
1,63 |
||
1500 |
8 |
1,27 |
|
15 |
1,56 |
||
20 |
1,86 |
||
1600 |
8 |
1,45 |
|
15 |
1,78 |
||
2000 |
5 |
1,75 |
|
10 |
2,56 |
||
11,5 |
2,68 |
||
Глинистый |
1300 |
8 |
0,72 |
18 |
1,08 |
||
40 |
1,66 |
||
1500 |
8 |
1,0 |
|
18 |
1,46 |
||
40 |
2,0 |
||
1600 |
8 |
1,13 |
|
27 |
1,93 |
Расчет требуемой толщины тепловой изоляции по нормированной плотности теплового потока в зависимости от технических требований может выполняться в двух вариантах:
а) по нормативным линейным плотностям теплового потока и , заданным отдельно для подающего и обратного трубопровода, в этом случае определяется толщина изоляции для каждого трубопровода;
б) по суммарной нормативной линейной плотности теплового потока от подающего и обратного трубопровода - , в этом случае определяется толщина изоляции, одинаковая для обоих трубопроводов.
Расчет толщины изоляции по нормативным линейным плотностям теплового потока, заданным отдельно для подающего - и обратного - трубопроводов выполняется в следующей последовательности.
На первом этапе рассчитывают температуру в канале по формуле
. (В.41)
Затем для каждого трубопровода вычисляются значения и по формулам:
; (В.42)
, (В.43)
где приближенные значения и принимаются по таблице В.3.
Далее, после вычисления и , по формуле (В.20) рассчитывают требуемые толщины изоляции для подающего и обратного трубопроводов, обеспечивающие нормативные линейные потери тепла:
; .
Расчет толщины изоляции подающего и обратного трубопроводов по суммарной нормативной линейной плотности теплового потока - , Вт/м, выполняется методом последовательных приближений (методом подбора).
На первом этапе задаются начальным значением толщины изоляции , одинаковой для подающего и обратного трубопроводов, и по формулам (В.36)-(В.39) рассчитывают температуру в канале. Затем по формуле (В.35) вычисляют суммарную линейную плотность теплового потока .
Полученное расчетное значение сравнивают с нормативной линейной плотностью теплового потока по таблицам 8, 9.
На втором этапе увеличивают или уменьшают толщину изоляции в зависимости от результата сравнения и повторяют расчет в той же последовательности до получения нового расчетного значения - .
Расчет повторяют до тех пор, пока расчетное значение плотности теплового потока - будет отличаться от нормативного значения - на заданную степень точности расчета, например, не более, чем на 1%. Последнее значение принимается в качестве расчетной толщины тепловой изоляции для подающего и обратного трубопроводов.
При расчете тепловой изоляции двухтрубных тепловых сетей в непроходных каналах расчетную температуру теплоносителя в подающих и обратных трубопроводах принимают по таблице В.5.
Расчетную температуру наружной среды принимают равной среднегодовой температуре грунта на глубине заложения трубопровода.
Коэффициент дополнительных тепловых потерь при расчете толщины изоляции по нормированной плотности теплового потока принимается равным 1.
При расстоянии от поверхности грунта до перекрытия канала 0,7 м и менее за расчетную температуру наружной среды должна приниматься та же температура наружного воздуха, что и при надземной прокладке.
В.3.3 Подземная бесканальная прокладка
Тепловые потери трубопроводов двухтрубных тепловых сетей бесканальной прокладки, расположенных в грунте на одинаковом расстоянии от поверхности до оси труб , м, определяются по формулам:
; (В.44)
; (В.45)
, (В.46)
где - термическое сопротивление грунта при бесканальной прокладке, м·°С/Вт, определяется по формуле
, (В.47)
где - наружный диаметр изолированного трубопровода, м; подающего - , обратного - ;
- теплопроводность грунта, Вт/(м·°С);
- глубина заложения (расстояние от оси труб до поверхности земли), м;
- термическое сопротивление, обусловленное тепловым взаимодействием двух труб, м·°С/Вт, определяется из выражения
, (В.48)
где - расстояния между осями труб по горизонтали, м.
Остальные значения величин в (В.44), (В.45) те же, что и в формуле (В.37) для канальной прокладки.
Так же, как при прокладке двухтрубных тепловых сетей в проходных каналах расчет требуемой толщины тепловой изоляции по нормированной плотности теплового потока в зависимости от технических требований может выполняться в двух вариантах:
а) по нормативным значениям линейной плотности теплового потока и , заданным отдельно для подающего и обратного трубопроводов;
б) по суммарной нормативной линейной плотности теплового потока от подающего и обратного трубопроводов - .
Расчет толщины изоляции трубопроводов тепловых сетей бесканальной прокладки по нормативным значениям линейной плотности теплового потока, заданным отдельно для подающего и обратного трубопровода выполняют по формулам:
; (В.49)
. (В.50)
Определив с помощью (В.49), (В.50) значения и , вычисляют толщины изоляции так же, как и для канальной прокладки в разделе В.3.2.
Расчет толщины изоляции подающего и обратного трубопроводов двухтрубных тепловых сетей бесканальной прокладки по суммарной нормативной линейной плотности теплового потока , Вт/м, выполняется методом последовательных приближений (методом подбора).
На первом этапе задаются начальным значением толщины изоляции , одинаковой для подающего и обратного трубопроводов, и по формулам (В.44)-(В.46) рассчитывают суммарную линейную плотность теплового потока .
Полученное расчетное значение сравнивают с нормативной линейной плотностью теплового потока (по таблицам 11, 12).
На втором этапе увеличивают или уменьшают толщину изоляции в зависимости от результата сравнения и повторяют расчет в той же последовательности до получения нового расчетного значения .
Расчет повторяют до тех пор, пока расчетное значение плотности теплового потока будет отличаться от нормативного значения на заданную степень точности расчета, например, не более, чем на 1%. Последнее значение принимается в качестве расчетной толщины тепловой изоляции для подающего и обратного трубопроводов.
Расчетные параметры теплоносителя и наружной среды для расчета изоляции трубопроводов двухтрубных тепловых сетей бесканальной прокладки принимаются такими же, как и в непроходных каналах.
В.4 Расчет тепловой изоляции трубопроводов, обогреваемых паровыми или водяными спутниками
В.4.1 Общие положения
В.4.1.1 Проектирование системы обогрева трубопроводов с паровыми и водяными спутниками осуществляется на основании технологических требований к конкретному объекту и технико-экономических расчетов.
Выбор числа и диаметров обогревающих спутников, системы их теплоснабжения и схемы подключения осуществляется на основании результатов теплового и гидравлического расчета системы обогрева с учетом вида теплоносителя, протяженности обогреваемого участка, располагаемого давления в системе теплоснабжения и других факторов.
Проектирование тепловой изоляции трубопроводов со спутниками выполняется на основании технологических требований с учетом расположения объекта, конструктивных и технологических параметров обогреваемого трубопровода и обогревающих его спутников, расчетных параметров окружающей среды.
В.4.2 Расчет тепловой изоляции трубопроводов, обогреваемых паровыми или водяными спутниками
В.4.2.1 Тепловая изоляция предназначена для обеспечения заданной температуры теплоносителя в любом сечении по длине трубопровода при условии безостановочного движения теплоносителя.
Методика расчета реализует следующую физическую модель теплообмена спутника с трубопроводом и теплоизоляционной конструкции с окружающей средой:
- тепло от спутника передается воздуху в пространстве, ограниченном теплоизоляционной конструкцией;
- тепло от воздуха в пространстве, ограниченном теплоизоляционной конструкцией, передается теплоносителю через поверхность трубопровода, контактирующую с воздухом в пространстве и наружному воздуху через поверхность теплоизоляционной конструкции, контактирующей с воздухом в пространстве;
- количество тепла, передаваемого через поверхность теплоизоляционной конструкции, контактирующей с трубопроводом, наружному воздуху равно количеству тепла, получаемого трубопроводом от воздуха в конструкции.
Указанная модель описывается двумя уравнениями теплового баланса:
, (В.51)
, (В.52)
где - удельный тепловой поток от спутника к воздуху в пространстве, ограниченном тепловой изоляцией, Вт/м;
- удельный тепловой поток от воздуха в пространстве, ограниченном тепловой изоляцией, через теплоизоляционный слой к окружающему воздуху, Вт/м;
- удельный тепловой поток от обогреваемого трубопровода к окружающему воздуху через теплоизоляционный слой в части, контактирующей с трубопроводом, Вт/м;
- удельный тепловой поток от воздуха в пространстве, ограниченном тепловой изоляцией, к трубопроводу, Вт/м.
Уравнения (В.51), (В.52) могут быть представлены в виде:
(В.53)
, (В.54)
где - температура трубопровода, °С;
- температура окружающего воздуха, °С;
- температура воздуха в пространстве, ограниченном изоляцией, °С;
- удельное термическое сопротивление теплоотдаче от спутника к воздуху в пространстве, ограниченном тепловой изоляцией, (м·°С)/Вт;
- термическое сопротивление теплоизоляционного слоя, в части, контактирующей с воздухом в пространстве, ограниченном тепловой изоляцией, (м·°С)/Вт;
- термическое сопротивление теплоизоляционного слоя, в части, контактирующей с трубопроводом, (м·°С)/Вт;
- удельное термическое сопротивление теплоотдаче от воздуха в пространстве, ограниченном тепловой изоляцией, к трубопроводу, (м·°С)/Вт.
В.4.2.2 Требуемая толщина тепловой изоляции рассчитывается путем совместного решения уравнений (В.53), (В.54) методом последовательных приближений. Расчет выполняется в следующей последовательности.
На первом этапе рассчитываются термические сопротивления , , , .
Далее, решением уравнения (В.53) определяется температура воздуха в пространстве, ограниченном теплоизоляционной конструкцией - .
При найденном значении уравнение (В.54) решается методом последовательных приближений относительно .
В.4.2.3 Температура спутника в расчетах принимается:
- при обогреве паром - равной температуре насыщения при заданном давлении пара в спутнике;
- при обогреве водой - вычисляется по формуле
, (В.55)
где - температура воды на входе в спутник, °С;
- температура воды на выходе из спутника, °С.
В.4.2.4 Удельное термическое сопротивление теплоотдаче от спутника к воздуху в пространстве, ограниченном тепловой изоляцией, (м·°С)/Вт, следует вычислять по формуле
, (В.56)
где - число спутников;
- коэффициент теплоотдачи спутника, Вт/(м·°С);
- наружный диаметр спутника, м.
Коэффициент теплоотдачи от спутника в пространство, ограниченное изоляцией, определяется по формуле
, (В.57)
где - эффективный критерий Нуссельта;
- коэффициент теплопроводности воздуха, Вт/(м·К).
Критерий является функцией произведения () и рассчитывается по эмпирической формуле
, (В.58)
где - критерий Грасгофа;
- критерий Прандтля.
Произведение критериев Грасгофа и Прандтля () рассчитывается по формуле
, (В.59)
где - ускорение свободного падения, равное 9,807 м/с;
- коэффициент объемного расширения воздуха, равный 3,664·10 1/К;
- коэффициент температуропроводности воздуха, м/с;
- кинематическая вязкость воздуха, м/с.
Физические параметры сухого воздуха - , , , принимаются по таблице В.7 при средней температуре воздуха в конструкции, определяемой по формуле
. (В.60)
Таблица В.7 - Физические свойства сухого воздуха при давлении 0,1 МПа
t, °C |
, кг/м |
, кДж/(кг·К) |
·10, Вт/(м·К) |
·10, м/с |
·10, м/с |
|
0 |
1,293 |
1,005 |
2,44 |
13,28 |
18,8 |
0,707 |
10 |
1,247 |
1,005 |
2,51 |
14,16 |
20,0 |
0,705 |
20 |
1,205 |
1,005 |
2,59 |
15,06 |
21,4 |
0,703 |
30 |
1,165 |
1,005 |
2,67 |
16,00 |
22,9 |
0,701 |
40 |
1,128 |
1,005 |
2,76 |
16,96 |
24,3 |
0,699 |
50 |
1,093 |
1,005 |
2,83 |
17,95 |
25,7 |
0,698 |
60 |
1,060 |
1,005 |
2,90 |
18,97 |
26,2 |
0,696 |
70 |
1,029 |
1,009 |
2,96 |
20,02 |
28,6 |
0,694 |
80 |
1,000 |
1,009 |
3,05 |
21,09 |
30,2 |
0,692 |
90 |
0,972 |
1,009 |
3,13 |
22,10 |
31,9 |
0,690 |
100 |
0,946 |
1,009 |
3,21 |
23,13 |
33,6 |
0,688 |
120 |
0,898 |
1,009 |
3,34 |
25,45 |
36,8 |
0,686 |
140 |
0,854 |
1,013 |
3,49 |
27,80 |
40,3 |
0,684 |
160 |
0,815 |
1,017 |
3,64 |
30,09 |
43,9 |
0,682 |
180 |
0,779 |
1,022 |
3,78 |
32,49 |
47,5 |
0,681 |
200 |
0,746 |
1,026 |
3,93 |
34,85 |
51,4 |
0,680 |
250 |
0,674 |
1,038 |
4,27 |
40,61 |
61,0 |
0,677 |
300 |
0,615 |
1,047 |
4,60 |
48,33 |
71,6 |
0,674 |
В.4.2.5 Термическое сопротивление теплоизоляционного слоя , (м·°С)/Вт, рассчитывается по формуле теплопередачи через плоскую стенку:
, (В.61)
где - толщина изоляции, м;
- длина внутренней образующей изоляции, м;
- длина наружной образующей изоляции, м;
. (В.62)
При расчете принимается приближенное значение толщины изоляции .
Геометрические характеристики конструкции , рассчитываются в зависимости от вида конструкции (рисунок В.1) с использованием соотношений элементарной геометрии и тригонометрических функций.
Коэффициент теплопроводности изделий в конструкции , Вт/(м·К), принимается по таблице Б.1 приложения Б при средней температуре слоя:
. (В.63)
Коэффициент теплоотдачи от воздуха внутри пространства, ограниченного изоляцией, к внутренней поверхности изоляции следует принимать равным 11,6 Вт/м·°С.
Коэффициент теплоотдачи от наружной поверхности изоляции в окружающий воздух , Вт/(м·°С), следует принимать по таблице В.2.
1 - диаметр обогреваемого трубопровода; 2 - диаметр спутника; 3 - толщина теплоизоляционного слоя; 4 - длина линейного участка образующей в конструкции ; 5 - длина образующей в формуле (В.68) для конструкции с одним и с двумя спутниками; 6 - угол - в конструкции с одним спутником; угол - в конструкции с двумя спутниками; 7 - угол - в конструкции с одним спутником; угол - в конструкции с двумя спутниками; 8 - длина линейного участка образующей в конструкции с двумя спутниками ;
Рисунок В.1 - Конструкции тепловой изоляции трубопроводов с обогревающими их паровыми и водяными спутниками: а) - с одним спутником; б) - с двумя спутниками
В.4.2.6 Термическое сопротивление изоляционного слоя , (м·°С)/Вт, вычисляется по формуле
, (В.64)
где - угол, характеризующий геометрию теплоизоляционной конструкции (рисунок В.1), радиан.
В.4.2.7 Удельное термическое сопротивление теплоотдаче от воздуха внутри пространства, ограниченного изоляцией, к трубопроводу, (м·°С)/Вт, следует вычислять по формуле
, (В.65)
где - угол, характеризующий геометрию теплоизоляционной конструкции (рисунок В.1), радиан.
Коэффициент теплоотдачи от воздуха внутри пространства, ограниченного изоляцией, к трубопроводу следует принимать равным 17,4 т/(м·°С)*.
_________________
* Текст документа соответствует оригитналу. - Примечание изготовителя базы данных.
В.4.2.8 Расчет толщины теплоизоляционного слоя выполняется по формуле
. (В.66)
Формула (В.66) решается методом последовательных приближений. Первое приближение толщины изоляции принимается равным принятому при расчете термического сопротивления . Толщина изоляции вычисляется по формуле (В.20).
В.4.2.9 Расчетную толщину изоляции вычисляют по формуле
, (В.67)
где - коэффициент, учитывающий дополнительные тепловые потери через опоры и арматуру. Для трубопроводов, расположенных в помещении и тоннелях, =1,15-1,2; для трубопроводов, расположенных на открытом воздухе, =1,25-1,3;
- поправочный коэффициент. При расчетах теплоизоляционных конструкций с естественным углом обогрева без подкладки (рисунок В.1) вводится =1,15.
В.4.2.10 При использовании экрана из алюминиевой фольги, укладываемой в качестве подстилающего слоя под теплоизоляционный слой, расчетную толщину изоляции следует уменьшать на 20%.
Подраздел В.4 (Введен дополнительно, Изм. N 1).