Приложение В
(обязательное)
В.1 Методы расчета критериев пожарной опасности для горючих газов и паров
В.1.1 При невозможности расчета пожарного риска выбор расчетного варианта следует осуществлять с учетом годовой частоты реализации и последствий тех или иных аварий. В качестве расчетного для вычисления критериев пожарной опасности наружных установок, в которых находятся (обращаются) горючие газы, пары, следует принимать вариант аварии, для которого произведение годовой частоты реализации этого варианта и расчетного избыточного давления при сгорании газо-, паровоздушных смесей в случае реализации указанного варианта максимально, то есть:
. (B.1)
Расчет величины производится в следующей последовательности:
а) рассматриваются различные варианты аварий и из статистических данных или на основе годовой частоты аварий со сгоранием газо-, паровоздушных смесей определяются для этих вариантов;
б) для каждого из рассматриваемых вариантов определяются по изложенной ниже методике значения расчетного избыточного давления ;
в) вычисляются величины для каждого из рассматриваемых вариантов аварии, среди которых выбирается вариант с наибольшим значением ;
г) в качестве расчетного для определения критериев пожарной опасности принимается вариант, в котором величина максимальна. При этом количество горючих газов, паров, вышедших в атмосферу, рассчитывается, исходя из рассматриваемого сценария аварии с учетом В.1.3-В.1.9.
В.1.2 При невозможности реализации метода по В.1.1 в качестве расчетного следует выбирать наиболее неблагоприятный вариант аварии или период нормальной работы аппаратов, при котором в образовании горючих газо-, паровоздушных смесей участвует наибольшее количество газов, паров, наиболее опасных в отношении последствий сгорания этих смесей. В этом случае количество газов, паров, вышедших в атмосферу, рассчитывается в соответствии с В.1.3-В.1.9.
В случае, если использование расчетных методов не представляется возможным, допускается определение значений критериев пожарной опасности на основании результатов соответствующих научно-исследовательских работ, согласованных и утвержденных в установленном порядке.
В.1.3 Количество поступивших веществ, которые могут образовывать горючие газовоздушные, паровоздушные смеси определяется, исходя из следующих предпосылок:
а) происходит расчетная авария одного из аппаратов согласно В.1.1 или В.1.2 (в зависимости от того, какой из подходов к определению расчетного варианта аварии принят за основу);
б) все содержимое аппарата поступает в окружающее пространство;
в) происходит одновременно утечка веществ из трубопроводов, питающих аппарат по прямому и обратному потоку в течение времени, необходимого для отключения трубопроводов.
Расчетное время отключения трубопроводов определяется в каждом конкретном случае, исходя из реальной обстановки, и должно быть минимальным с учетом паспортных данных на запорные устройства, характера технологического процесса и вида расчетной аварии.
Расчетное время отключения трубопроводов следует принимать равным:
- времени срабатывания систем автоматики отключения трубопроводов согласно паспортным данным установки, если вероятность отказа системы автоматики не превышает 0,000001 в год или обеспечено резервирование ее элементов (но не более 120 с);
-120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов;
- 300 с при ручном отключении;
г) происходит испарение с поверхности разлившейся жидкости; площадь испарения при разливе на горизонтальную поверхность определяется (при отсутствии справочных или иных экспериментальных данных), исходя из расчета, что 1 литр смесей и растворов, содержащих 70% и менее (по массе) растворителей, разливается на площади 0,10 м, а остальных жидкостей - на 0,15 м;
д) происходит также испарение жидкостей из емкостей, эксплуатируемых с открытым зеркалом жидкости, и со свежеокрашенных поверхностей;
е) длительность испарения жидкости принимается равной времени ее полного испарения, но не более 3600 с.
В.1.4 Масса газа , кг, поступившего в окружающее пространство при расчетной аварии, определяется по формуле
, (B.2)
где - объем газа, вышедшего из аппарата, м;
- объем газа, вышедшего из трубопровода, м;
- плотность газа, кг·м.
При этом
, (B.3)
где - давление в аппарате, кПа;
- объем аппарата, м;
, (B.4)
где - объем газа, вышедшего из трубопровода до его отключения, м;
- объем газа, вышедшего из трубопровода после его отключения, м;
, (B.5)
где - расход газа, определяемый по технологическому регламенту в зависимости от давления в трубопроводе, его диаметра, температуры газовой среды и т.д., м·с;
- время, определяемое по В.1.3, с;
, (B.6)
где - максимальное давление в трубопроводе по технологическому регламенту, кПа;
- внутренний радиус трубопроводов, м;
- длина трубопроводов от аварийного аппарата до задвижек, м.
В.1.5 Масса паров жидкости , кг, поступивших в окружающее пространство при наличии нескольких источников испарения (поверхность разлитой жидкости, поверхность со свеженанесенным составом, открытые емкости и т.п.), определяется из выражения
, (B.7)
где - масса жидкости, испарившейся с поверхности разлива, кг;
- масса жидкости, испарившейся с поверхностей открытых емкостей, кг;
- масса жидкости, испарившейся с поверхностей, на которые нанесен применяемый состав, кг;
- масса жидкости, испарившейся в окружающее пространство в случае ее перегрева, кг.
При этом каждое из слагаемых (, , ) в формуле (В.7) определяют из выражения
, (B.8)
где - интенсивность испарения, кг·с·м;
- площадь испарения, м, определяемая в соответствии с В.1.3 в зависимости от массы жидкости , вышедшей в окружающее пространство;
- продолжительность поступления паров легковоспламеняющихся и горючих жидкостей в окружающее пространство согласно В.1.3, с.
Величину определяют по формуле (при )
, (B.9)
где - масса вышедшей перегретой жидкости, кг;
- удельная теплоемкость жидкости при температуре перегрева жидкости , Дж·кг·К;
- температура перегретой жидкости в соответствии с технологическим регламентом в технологическом аппарате или оборудовании, К;
- нормальная температура кипения жидкости, К;
- удельная теплота испарения жидкости при температуре перегрева жидкости , Дж·кг.
Если аварийная ситуация связана с возможным поступлением жидкости в распыленном состоянии, то она должна быть учтена в формуле (В.7) введением дополнительного слагаемого, учитывающего общую массу поступившей жидкости от распыляющих устройств, исходя из продолжительности их работы.
В.1.6 Масса вышедшей жидкости, кг, определяют в соответствии с В.1.3.
В.1.7 Интенсивность испарения определяется по справочным и экспериментальным данным. Для ненагретых выше расчетной температуры (окружающей среды) ЛВЖ при отсутствии данных допускается рассчитывать по формуле
, (В.10)
где - молярная масса, кг·кмоль;
- давление насыщенного пара при расчетной температуре жидкости, определяемое по справочным данным, кПа.
В.1.8 Масса паров жидкости, нагретой выше расчетной температуры, но не выше температуры кипения жидкости, определяется в соответствии с А.2.8 (приложение А).
В.1.9 Для сжиженных углеводородных газов (СУГ) при отсутствии данных допускается рассчитывать удельную массу испарившегося СУГ из пролива, кг·м, по формуле
, (В.11)
где - молярная масса СУГ, кг·моль;
- мольная теплота испарения СУГ при начальной температуре СУГ , Дж·моль;
- начальная температура материала, на поверхность которого разливается СУГ, К;
- начальная температура СУГ, К;
- коэффициент теплопроводности материала, на поверхность которого разливается СУГ, Вт·м·К;
- коэффициент температуропроводности материала, на поверхность которого разливается СУГ, м·с;
- теплоемкость материала, на поверхность которого разливается СУГ, Дж·кг·К;
- плотность материала, на поверхность которого разливается СУГ, кг·м;
- текущее время, с, принимаемое равным времени полного испарения СУГ, но не более 3600 с;
- число Рейнольдса;
- скорость воздушного потока, м·с;
- характерный размер пролива СУГ, м;
- кинематическая вязкость воздуха, м·с;
- коэффициент теплопроводности воздуха, Вт·м·К.
Формула (В.11) справедлива для СУГ с температурой . При температуре СУГ дополнительно рассчитывается масса перегретых СУГ по формуле (В.9).
В.2 Расчет горизонтальных размеров зон, ограничивающих газо- и паровоздушные смеси с концентрацией горючего выше НКПР, при аварийном поступлении горючих газов и паров ненагретых легковоспламеняющихся жидкостей в открытое пространство
В.2.1 Горизонтальные размеры зоны , м, ограничивающие область концентраций, превышающих нижний концентрационный предел распространения пламени () по ГОСТ 12.1.044, вычисляют по формулам:
- для горючих газов (ГГ):
, (В.12)
- для паров ненагретых легковоспламеняющихся жидкостей (ЛВЖ):
, (В.13)
,
где - масса поступивших в открытое пространство ГГ при аварийной ситуации, кг;
- плотность ГГ при расчетной температуре и атмосферном давлении, кг·м;
- нижний концентрационный предел распространения пламени ГГ или паров ЛВЖ, % (объемных);
- коэффициент, принимаемый равным для ЛВЖ;
- масса паров ЛВЖ, поступивших в открытое пространство за время полного испарения, но не более 3600 с, кг;
- плотность паров ЛВЖ при расчетной температуре и атмосферном давлении, кг·м;
- давление насыщенных паров ЛВЖ при расчетной температуре, кПа;
- продолжительность поступления паров ЛВЖ в открытое пространство, с;
- молярная масса, кг·кмоль;
- мольный объем, равный 22,413 м·кмоль;
- расчетная температура, °С. В качестве расчетной температуры следует принимать максимально возможную температуру воздуха в соответствующей климатической зоне или максимальную возможную температуру воздуха по технологическому регламенту с учетом возможного повышения температуры в аварийной ситуации. Если такого значения расчетной температуры по каким-либо причинам определить не удается, допускается принимать ее равной 61 °С.
(Измененная редакция, Изм. N 1).
В.2.2 За начало отсчета горизонтального размера зоны принимают внешние габаритные размеры аппаратов, установок, трубопроводов и т.п. Во всех случаях значение должно быть не менее 0,3 м для ГГ и ЛВЖ.
В.3 Расчет избыточного давления и импульса волны давления при сгорании смесей горючих газов и паров с воздухом в открытом пространстве
В.3.1 Исходя из рассматриваемого сценария аварии, определяют массу , кг, горючих газов и (или) паров, вышедших в атмосферу из технологического аппарата в соответствии с В.1.3-В.1.9.
В.3.2 Избыточное давление , кПа, развиваемое при сгорании газопаровоздушных смесей, рассчитывают по формуле
, (В.14)
где - атмосферное давление, кПа (допускается принимать равным 101 кПа);
- расстояние от геометрического центра газопаровоздушного облака, м;
- приведенная масса газа или пара, кг, рассчитанная по формуле
, (B.15)
где - удельная теплота сгорания газа или пара, Дж·кг;
- коэффициент участия горючих газов и паров в горении, который допускается принимать равным 0,1;
- константа, равная 4,52·10 Дж·кг;
- масса горючих газов и (или) паров, поступивших в результате аварии в окружающее пространство, кг.
В.3.3 Импульс волны давления , Па·с, рассчитывают по формуле
. (В.16)
В.4 Метод расчета критериев пожарной опасности для горючих пылей
В.4.1 В качестве расчетного варианта аварии для определения критериев пожарной опасности для горючих пылей следует выбирать наиболее неблагоприятный вариант аварии или период нормальной работы аппаратов, при котором в горении пылевоздушной смеси участвует наибольшее количество веществ или материалов, наиболее опасных в отношении последствий такого горения.
В.4.2 Количество поступивших веществ, которые могут образовывать горючие пылевоздушные смеси, определяют, исходя из предпосылки о том, что в момент расчетной аварии произошла плановая (ремонтные работы) или внезапная разгерметизация одного из технологических аппаратов, за которой последовал аварийный выброс в окружающее пространство находившейся в аппарате пыли.
В.4.3 Расчетная масса пыли, поступившей в окружающее пространство при расчетной аварии, определяется по формуле
, (В.17)
где - расчетная масса поступившей в окружающее пространство горючей пыли, кг;
- расчетная масса взвихрившейся пыли, кг;
- расчетная масса пыли, поступившей в результате аварийной ситуации, кг;
- стехиометрическая концентрация горючей пыли в аэровзвеси, кг·м;
- расчетный объем пылевоздушного облака, образованного при аварийной ситуации, м.
В отсутствие возможности получения сведений для расчета допускается принимать
. (В.18)
В.4.4 определяют по формуле
, (В.19)
где - доля горючей пыли в общей массе отложений пыли;
- доля отложенной вблизи аппарата пыли, способной перейти во взвешенное состояние в результате аварийной ситуации. В отсутствие экспериментальных данных о величине допускается принимать 0,9;
- масса отложившейся вблизи аппарата пыли к моменту аварии, кг.
В.4.5 определяют по формуле
, (В.20)
где - масса горючей пыли, выбрасываемой в окружающее пространство при разгерметизации технологического аппарата, кг; при отсутствии ограничивающих выброс пыли инженерных устройств следует принимать, что в момент расчетной аварии происходит аварийный выброс в окружающее пространство всей находившейся в аппарате пыли;
- производительность, с которой продолжается поступление пылевидных веществ в аварийный аппарат по трубопроводам до момента их отключения, кг·с;
- расчетное время отключения, с, определяемое в каждом конкретном случае, исходя из реальной обстановки. Следует принимать равным времени срабатывания системы автоматики, если вероятность ее отказа не превышает 0,000001 в год или обеспечено резервирование ее элементов (но не более 120 с); 120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов; 300 с при ручном отключении;
- коэффициент пыления, представляющий отношение массы взвешенной в воздухе пыли ко всей массе пыли, поступившей из аппарата. В отсутствие экспериментальных данных о допускается принимать: 0,5 - для пылей с дисперсностью не менее 350 мкм; 1,0 - для пылей с дисперсностью менее 350 мкм.
В.4.6 Исходя из рассматриваемого сценария аварии, определяют массу , кг, горючей пыли, поступившей в результате аварии в окружающее пространство в соответствии с В.4.1-В.4.5.
В.4.7 Избыточное давление для горючих пылей рассчитывают в следующей последовательности:
а) определяют приведенную массу горючей пыли , кг, по формуле:
, (B.21)
где - масса горючей пыли, поступившей в результате аварии в окружающее пространство, кг;
- коэффициент участия пыли в горении, значение которого допускается принимать равным 0,1.
В отдельных обоснованных случаях величина может быть снижена, но не менее чем до 0,02;
- теплота сгорания пыли, Дж·кг;
- константа, принимаемая равной 4,52·10 Дж·кг;
б) вычисляют расчетное избыточное давление , кПа, по формуле:
, (В.22)
где - атмосферное давление, кПа;
- расстояние от центра пылевоздушного облака, м. Допускается отсчитывать величину от геометрического центра технологической установки.
В.4.8 Импульс волны давления , Па·с, вычисляют по формуле:
. (В.23)
В.5 Метод расчета интенсивности теплового излучения
В.5.1 Интенсивность теплового излучения рассчитывают для двух случаев пожара (или для того из них, который может быть реализован в данной технологической установке):
- пожар проливов ЛВЖ, ГЖ, СУГ, СПГ (сжиженный природный газ) или горение твердых горючих материалов (включая горение пыли);
- "огненный шар".
Если возможна реализация обоих случаев, то при оценке значений критерия пожарной опасности учитывается наибольшая из двух величин интенсивности теплового излучения.
В.5.2 Интенсивность теплового излучения , кВт·м, для пожара пролива жидкости или при горении твердых материалов рассчитывают по формуле
, (B.24)
где - среднеповерхностная плотность теплового излучения пламени, кВт·м;
- угловой коэффициент облученности;
- коэффициент пропускания атмосферы.
принимают на основе имеющихся экспериментальных данных. Для некоторых жидких углеводородных топлив указанные данные приведены в таблице В.1.
Таблица В.1 - Среднеповерхностная плотность теплового излучения пламени в зависимости от диаметра очага и удельная массовая скорость выгорания для некоторых жидких углеводородов
Углеводороды |
, кВт·м |
, кг·м·с |
||||
10 м |
20 м |
30 м |
40 м |
50 м |
||
СПГ (метан) |
220 |
180 |
150 |
130 |
120 |
0,08 |
СУГ (пропан-бутан) |
80 |
63 |
50 |
43 |
40 |
0,10 |
Бензин |
60 |
47 |
35 |
28 |
25 |
0,06 |
Дизельное топливо |
40 |
32 |
25 |
21 |
18 |
0,04 |
Нефть |
25 |
19 |
15 |
12 |
10 |
0,04 |
Примечание - Для диаметров очагов менее 10 м или более 50 м следует принимать такой же, как и для очагов диаметром 10 м и 50 м соответственно. |
При отсутствии данных допускается принимать величину равной 100 кВт·м для СУГ, 40 кВт·м - для нефтепродуктов, 40 кВт·м - для твердых материалов.
В.5.3 Рассчитывают эффективный диаметр пролива , м, по формуле:
, (B.25)
где - площадь пролива, м.
В.5.4 Вычисляют высоту пламени , м, по формуле:
, (В.26)
где - удельная массовая скорость выгорания жидкости, кг·м·с;
- плотность окружающего воздуха, кг·м;
- ускорение свободного падения, 9,81 м·с.
В.5.5 Определяют угловой коэффициент облученности по формулам:
, (B.27)
где , - факторы облученности для вертикальной и горизонтальной площадок соответственно, которые определяют с помощью выражений:
, (В.28)
, (В.29)
, (B.30)
, (В.31)
, (B.32)
, (B.33)
где - расстояние от геометрического центра пролива до облучаемого объекта, м.
Определяют коэффициент пропускания атмосферы по формуле
. (B.34)
В.5.6 Интенсивность теплового излучения , кВт·м, для "огненного шара" рассчитывают по формуле В.24.
определяют на основе имеющихся экспериментальных данных. Допускается принимать равным 450 кВт·м.
В.5.7 вычисляют по формуле
, (В.35)
где - высота центра "огненного шара", м;
- эффективный диаметр "огненного шара", м;
- расстояние от облучаемого объекта до точки на поверхности земли непосредственно под центром "огненного шара", м.
В.5.8 Эффективный диаметр "огненного шара" рассчитывают по формуле
, (В.36)
где - масса горючего вещества, кг.
В.5.9 определяют в ходе специальных исследований. Допускается принимать равной .
В.5.10 Время существования "огненного шара" , с, рассчитывают по формуле:
. (B.37)
В.5.11 Коэффициент пропускания атмосферы рассчитывают по формуле
. (В.38)
В.6 Метод расчета радиуса воздействия высокотемпературных продуктов сгорания газо- или паровоздушной смеси в открытом пространстве
Радиус воздействия высокотемпературных продуктов сгорания газо- или паровоздушной смеси в открытом пространстве , м, рассчитывают по формуле:
, (B.39)
где - горизонтальный размер зоны, ограничивающей область концентраций, превышающих , определяемый по формуле (В.12).
В.7 Метод расчета длины факела при струйном горении горючих газов
Длина факела , м, при струйном горении горючих газов рассчитывают по формуле:
, (B.40)
где - коэффициент, который при истечении сжатых газов принимается равным 12,5; при истечении паровой фазы СУГ или СПГ - 13,5; при истечении жидкой фазы СУГ или СПГ - 15;
- расход горючего газа, кг·с.