ГОСТ 20426-82 Контроль неразрушающий. Методы дефектоскопии радиационные. Область применения

ГОСТ 20426-82 Контроль неразрушающий. Методы дефектоскопии радиационные. Область применения

2. ОБЛАСТЬ ПРИМЕНЕНИЯ

2.1. Радиографический метод

2.1.1. Напряжение на рентгеновской трубке, радиоактивный источник излучения, энергию ускоренных электронов бетатрона следует выбирать в зависимости от толщины и плотности просвечиваемого материала по табл. 2-4.

Таблица 2

Область применения радиографического метода дефектоскопии при использовании рентгеновских аппаратов

Толщина просвечиваемого материала, мм

Напряжение на рентгеновской трубке, кВ, не более


Сплав на основе

Неметаллический материал со средним атомным номером (плотность, г/смЧисло)

железа

титана

алюминия

магния

14
(1,4)

6,2
(1,4)

5,5
(0,9)

0,02

0,05

0,25

0,75

0,5

5

8

20

0,3

0,75

3,75

11

8

50

75

40

0,4

1

5

14

10

60

80

50

0,7

2

12

22

20

70

120

60

1,5

5

29

46

-

-

-

80

3

8

45

66

-

-

-

100

6

14

56

92

-

-

-

120

12

29

60

150

-

-

-

150

20

45

97

160

-

-

-

200

23

53

102

166

-

-

-

250

32

70

128

233

-

-

-

300

40

90

180

270

-

-

-

400

130

230

370

560

-

-

-

1000



Таблица 3

Область применения радиографического метода дефектоскопии при использовании гамма-дефектоскопов

Толщина просвечиваемого сплава, мм, на основе


Закрытый радиоактивный

железа

титана

алюминия

магния

источник


От 1 до 20


От 2 до 40


От 3 до 70


От 10 до 200


ЧислоTm

» 5 » 30

» 7 » 50

» 20 » 200

» 30 » 300

ЧислоSe

» 5 » 100

» 10 » 120

» 40 » 350

» 70 » 450

ЧислоIr

» 10 » 120

» 20 » 150

» 50 » 350

» 100 » 500

ЧислоCs

» 30 » 200

» 60 » 300

» 200 » 500

» 300 » 700

ЧислоCo



Таблица 4

Область применения радиографического метода дефектоскопии при использовании бетатронов

Толщина просвечиваемого сплава, мм, на основе


Энергия ускоренных

железа

титана

алюминия

свинца

электронов, МэВ

От 50 до 100

От 90 до 190

От 150 до 310

От 30 до 60

6

» 70 » 180

» 130 » 350

» 220 » 570

» 40 » 110

9

» 100 » 220

» 190 » 430

» 330 » 740

» 50 » 110

18

» 130 » 250

» 250 » 490

» 480 » 920

» 60 » 120

25

» 150 » 350

» 290 » 680

» 570 » 1300

» 60 » 150

30

» 150 » 450

» 290 » 880

» 610 » 1800

» 60 » 180

35

2.1.2. При радиографическом методе неразрушающего контроля в зависимости от энергии излучения, требуемой чувствительности и производительности контроля должны быть использованы следующие преобразователи излучения:

радиографическая пленка без усиливающих экранов;

радиографическая пленка в различных комбинациях с усиливающими металлическими и флуоресцирующими экранами;

фотобумага.

2.2. Электрорадиографический метод

2.2.1. Напряжение на рентгеновской трубке следует выбирать в зависимости от толщины и плотности просвечиваемого материала по табл. 5.

Таблица 5

Область применения электрорадиографического метода дефектоскопии при использовании рентгеновских аппаратов

Толщина просвечиваемого материала, мм


Сплав на основе

Неметаллический материал со средним атомным номером (плотность, г/смЧисло)

Напряжение на рентгеновской трубке, кВ, не более

железа

титана

алюминия

магния

14 (1,4)

6,2 (1,4)

5,5 (0,9)


0,2

0,6

4

7

5

40

60

40

0,4

1,5

6

9

7

50

75

50

0,8

2,4

8

17

14

60

80

60

2

6

15

27

25

90

120

80

4

11

22

40

-

-

-

100

7

18

35

56

-

-

-

120

11

26

52

82

-

-

-

150

18

41

82

124

-

-

-

200

25

52

113

165

-

-

-

250

2.2.2. При электрорадиографическом методе неразрушающего контроля следует использовать электрорадиографические пластины. Перенос изображения на бумагу или другой носитель осуществляют с помощью проявляющего порошка, создающего изображение на электрорадиографической пластине.

2.3. Радиоскопический метод

2.3.1. Напряжение на рентгеновской трубке, энергию ускоренных электронов бетатрона, преобразователь излучения следует выбирать в зависимости от толщины и плотности просвечиваемого материала по табл. 6.

2.3.2. При радиоскопическом методе неразрушающего контроля необходимо использовать следующие преобразователи излучения:

флуороскопический экран;

рентгеновский электронно-оптический преобразователь (РЭОП);

рентгено-телевизионную установку с флуоресцирующим экраном или сцинтилляционным монокристаллом, или РЭОП, или сцинтилляционным монокристаллом и электронно-оптическим усилителем яркости изображения, или рентгеновидиконом;

сцинтилляционный монокристалл с электронно-оптическим преобразователем (ЭОП).

2.4. Радиометрический метод

2.4.1. Источники излучения следует выбирать в зависимости от толщины и плотности просвечиваемого материала по табл. 7.

В рентгеновских аппаратах, используемых при радиометрическом методе, необходимо предусмотреть стабилизацию высокого напряжения.

2.4.2. При радиометрическом методе неразрушающего контроля необходимо использовать следующие преобразователи излучения:

газоразрядный счетчик;

ионизационную камеру;

сцинтилляционный счетчик;

полупроводниковый детектор;

счетчик Черенкова.

2.5. При контроле объектов из материалов, не указанных в табл. 2-7, и сплавов, легированных ванадием, хромом, цирконием и другими элементами, источник и энергию излучения следует определять расчетным путем (см. приложения 1 и 2) или экспериментально.

Значения толщин, которые являются промежуточными между значениями, приведенными в табл. 2 и 5, следует определять методом линейной интерполяции.

Область применения радиационных методов неразрушающего контроля железобетонных изделий и конструкций - по ГОСТ 17625-83 и ГОСТ 17623-87.

Таблица 6

Область применения радиоскопического метода

Толщина просвечиваемого материала, мм

Преобразователь излучения при контроле

Источник излучения

Напряжение на рент- геновской трубке и энергия ускоренных электронов

Сплав на основе

Неметаллический материал со средним атомным номером (плотность, г/смЧисло)



сварных и клепаных соединений и изделий



отливок, паяных и клепаных соединений и изделий

же- леза

титана

алю- миния

магния

14 (1,4)

6,2 (1,4)

5,5 (0,9)

Oт 1 до 6

От 1 до 8

От 1 до 15

От 1 до 20

Oт 1
до 17

От 1
до 90

От 1
до 130

Рентгено- телевизионная установка с рентгеновидиконом, РЭОП

Рентгено- телевизионная установка с рентгеновидиконом, РЭОП, флуороскопический экран

10-120 кB

От 4 до 12

Oт 8 до 25

От 15 до 30

От 20 до 40

От 17
до 25

От 90
до 120

От 130
до 170

РЭОП, рентгенотеле-
визионная установка со сцинтилляционным монокристаллом или флуоресцирующим экраном

РЭОП, рентгеноте-
левизионная установка с флуоресцирующим экраном или сцинтилляционным монокристаллом, сцинтилляционный монокристалл с ЭОП

50-180 кВ

От 12 до 20

От 25 до 40

От 30 до 50

От 40 до 70

-

-

-

Рентгено- телевизионная установка с РЭОП или сцинтилляционным монокристаллом

Рентгенотеле-
визионная установка с РЭОП, флуоресцирующим экраном или сцинтилляционным монокристаллом

Рентге-
новские аппараты

100-250 кВ

От 20 до 40

Св. 40

Св. 50

Св. 70

-

-

-

Рентгено- телевизионная установка со сцинтилляционным монокристаллом

Рентгено- телевизионная установка со сцинтилляционным монокристаллом или РЭОП

200-300 кВ

От 40 до 60

-

-

-

-

-

-

Рентгенотелевизионная установка со сцинтилляционным монокристаллом и электронно-оптическим усилителем яркости изображения

220-400 кВ

Св.60

-

-

-

-

-

-

Рентгенотелевизионная установка со сцинтилляционным монокристаллом и электронно-оптическим усилителем яркости изображения

Бета- троны

1000-35000 кэВ




Таблица 7

Область применения радиометрического метода

Толщина подсвечиваемого сплава, мм, на основе

Источник излучения

железа

титана

алюминия


От 1 до 130

От 2 до 230

Oт 5 до 370

Рентгеновские аппараты напряжением от 40 до 1000 кВ

От 1 до 150

От 2 до 300

От 5 до 500

Радиоактивные источники из ЧислоTm, ЧислоSe, ЧислоIr, ЧислоCs, ЧислоCo

Св. 50

Св. 90

Св. 150


Бетатроны с энергией ускоренных электронов от 6 до 35 МэВ


При разрушающем радиационном контроле многобарьерных конструкций, применении компенсаторов и выравнивающих фильтров необходимо учитывать суммарную толщину материала, проходимого излучением при просвечивании.

2.6. Режимы неразрушающего радиационного контроля конкретного объекта зависят от чувствительности к излучению, контрастной чувствительности и разрешающей способности применяемого преобразователя излучения, интенсивности излучения источника, геометрических параметров схем просвечивания. Эти режимы должны быть оптимальными по чувствительности и производительности контроля.

2.7. Допускается использовать другие источники энергии и преобразователи излучения при условии обеспечения чувствительности контроля, требуемой стандартами, техническими условиями и рабочими чертежами, утвержденными в установленном порядке, на конкретный объект контроля.

2.8. Технология и режимы контроля должны быть установлены в технологической документации, разработанной в соответствии с ГОСТ 3.1102-81 и ГОСТ 3.1502-85.

      Магазин учебных материалов