4. ПРОВЕДЕНИЕ КОНТРОЛЯ
4.1. Основными этапами проведения капиллярного неразрушающего контроля являются:
подготовка объекта к контролю;
обработка объекта дефектоскопическими материалами;
проявление дефектов;
обнаружение дефектов и расшифровка результатов контроля;
окончательная очистка объекта.
4.2. Технологические режимы операций контроля (продолжительность, температуру, давление) устанавливают в зависимости от требуемого класса чувствительности, используемого набора дефектоскопических материалов, особенностей объекта контроля и типа искомых дефектов, условий контроля и используемой аппаратуры.
4.3. Подготовка объектов к контролю включает очистку контролируемой поверхности и полостей дефектов от всевозможных загрязнений, лакокрасочных покрытий, моющих составов и дефектоскопических материалов, оставшихся от предыдущего контроля, а также сушку контролируемой поверхности и полостей дефектов.
Способы очистки контролируемой поверхности приведены ниже:
механический - очистка струей абразивного материала (песком, дробью, косточковой крошкой) или механической обработкой поверхности;
паровой - очистка в парах органических растворителей;
растворяющий - очистка промывкой, протирка с применением воды, водных моющих растворов или легколетучих растворителей;
химический - очистка водными растворами химических реактивов;
электрохимический - очистка водными растворами химических реактивов с одновременным воздействием электрического тока;
ультразвуковой - очистка растворителями, водой или водными растворами химических соединений в ультразвуковом поле с использованием ультразвукового капиллярного эффекта;
анодно-ультразвуковой - очистка водными растворами химических реактивов с одновременным воздействием ультразвука и электрического тока;
тепловой - очистка прогревом при температуре, не вызывающей недопустимых изменений материала контролируемого объекта и окисления его поверхности;
сорбционный - очистка смесью сорбента и быстросохнущего органического растворителя, наносимой на очищаемую поверхность, выдерживаемой и удаляемой после высыхания.
Примечания:
1. Необходимые способы очистки, их сочетание и требуемую чистоту контролируемых поверхностей определяют в технической документации на контроль.
2. При заданном высоком классе чувствительности контроля предпочтительны не механические, а химические и электрохимические способы очистки, в том числе с воздействием на объект контроля ультразвука или электрического тока. Эффективность этих способов обусловлена оптимальным выбором очищающих составов, режимов очистки, сочетанием и последовательностью используемых способов очистки, включая сушку.
4.4. При подготовке объекта к контролю в необходимых случаях проводят работы по снятию или компенсации остаточных или рабочих напряжений в объекте, сжимающих полости искомых дефектов.
При поиске сквозных дефектов в стенках трубопроводных систем, баллонов, агрегатов и аналогичных полостных объектов, заполненных газом или жидкостью и находящихся под избыточным давлением, полости таких объектов освобождают от жидкости и доводят давление газа в них до атмосферного.
4.5. Обработка объекта дефектоскопическими материалами заключается в:
заполнении полостей дефектов индикаторным пенетрантом;
удалении избытка индикаторного пенетранта;
нанесении проявителя.
4.5.1. Способы заполнения дефектов индикаторным пенетрантом и их технологическая характеристика указаны ниже:
капиллярный - самопроизвольное заполнение полостей дефектов индикаторным пенетрантом, наносимым на контролируемую поверхность смачиванием, погружением, струей, распылением сжатым воздухом, хладоном или инертным газом;
вакуумный - заполнение полостей дефектов индикаторным пенетрантом при давлении в их полостях менее атмосферного;
компрессионный - заполнение полостей дефектов индикаторным пенетрантом при воздействии на него избыточного давления;
ультразвуковой - заполнение полостей дефектов индикаторным пенетрантом в ультразвуковом поле с использованием ультразвукового капиллярного эффекта;
деформационный - заполнение полостей дефектов индикаторным пенетрантом при воздействии на объект контроля упругих колебаний звуковой частоты или статического нагружения, увеличивающего минимальный размер дефектов.
Примечание. Для выявления сквозных дефектов пенетрант допускается наносить на поверхность, противоположную контролируемой.
4.5.2. Температура контролируемого объекта и индикаторного пенетранта должна быть в пределах, указанных в технической документации на данный дефектоскопический материал и объект контроля.
4.5.3. Продолжительность заполнения полостей дефектов определяют в технической документации на контроль объектов.
4.5.4. Избыток индикаторного пенетранта удаляют или гасят на контролируемой поверхности (в зависимости от технологического признака по п.2.4) с применением очистителя или без него в возможно короткий промежуток времени от момента окончания заполнения полостей дефектов до момента начала проявления.
Способы удаления индикаторного пенетранта приведены ниже:
протирка - удаление индикаторного пенетранта салфетками с применением или без применения очищающего состава или растворителя;
промывка - удаление индикаторного пенетранта водой, специальным очищающим составом или их смесями (погружением, струей или распыленным потоком);
обдувка - удаление индикаторного пенетранта струей песка, дроби, косточковой крошки, древесными опилками;
гашение - устранение люминесценции или цвета воздействием гасителя.
4.5.5. При использовании водосмываемых (после воздействия очистителя) индикаторных пенетрантов перед употреблением проявителей любого типа (кроме суспензий на водяной основе) мокрую контролируемую поверхность подвергают естественной сушке или сушке в потоке воздуха. Допускается протирка чистой гигроскопической тканью, ветошью, древесными опилками.
Допускается удалять индикаторный пенетрант обдувкой и гашением без предварительной обработки очистителем и водой.
4.5.6. Проявитель наносят способами, указанными ниже:
распыление - нанесение жидкого проявителя струей воздуха, хладона, инертного газа или безвоздушным методом;
электрораспыление - нанесение проявителя в электростатическом поле с воздушным или безвоздушным распылением;
воздушной взвеси - нанесение порошкообразного проявителя созданием его воздушной взвеси в камере, где размещен объект контроля;
кистевой - нанесение жидкого проявителя кистью, щеткой или средствами, их заменяющими;
погружение - нанесение жидкого проявителя кратковременным погружением в него объекта контроля;
обливание - нанесение жидкого проявителя обливанием;
электроосаждение - нанесение проявителя погружением в него объекта контроля с одновременным воздействием электрического тока;
посыпание - нанесение порошкообразного проявителя припудриванием или обсыпанием объекта контроля;
наклеивание - нанесение ленты пленочного проявителя прижатием липкого слоя к объекту контроля.
4.5.7. При использовании самопроявляющихся, фильтрующихся и других индикаторных пенетрантов, не требующих нанесения проявителя, последний не наносят.
4.6. Проявление следов дефектов представляет собой процесс образования рисунка в местах наличия дефектов.
Способы проявления индикаторных следов дефектов указаны ниже:
временной - выдержка объектов на воздухе до момента полного и четкого появления индикаторных следов дефектов;
тепловой - нагревание объектов при нормальном атмосферном давлении;
вакуумный - создание вакуума над поверхностью объекта с постоянным или изменяющимся по определенному закону разрежением;
вибрационный - упруго-деформационное воздействие на объект посредством вибрации, циклического или статического его нагружения.
4.7. Обнаружение дефектов представляет собой сочетание или отдельное использование способов наблюдения и регистрации индикаторного следа, указанных в табл.3.
Таблица 3
Наименование метода |
Способ обнаружения индикаторного следа дефекта |
Обозначение капиллярных методов и способов |
Технологическая характеристика |
Проникающих растворов |
Яркостный (ахроматический) |
Я |
Обнаружение дефектов по индикаторному ахроматическому следу в видимом излучении |
Цветной (хроматический) |
Ц |
Обнаружение дефекта по цветному индикаторному следу в видимом излучении |
|
Люминесцентный |
Л |
Обнаружение дефекта в длинноволновом ультрафиолетовом излучении по люминесцирующему видимым излучением индикаторному следу |
|
Люминесцентно-цветной |
ЛЦ |
Обнаружение дефекта по цветному или люминесцирующему индикаторному следу в видимом или длинноволновом ультрафиолетовом излучении |
|
Фильтрующихся суспензий |
Люминесцентный |
ФЛ |
Обнаружение дефекта по скоплению отфильтрованных частиц (люминесцентных, цветных, люминесцентно-цветных) |
Цветной |
ФЦ |
||
Люминесцентно-цветной |
ФЛЦ |
||
Комбинированный |
Капиллярно- электростатический |
КЭ |
Обнаружение дефектов в неметаллических объектах по индикаторному следу, образованному наэлектризованным порошком и пенетрантом |
Капиллярно- электроиндуктивный |
КИ |
Обнаружение дефектов в неэлектропроводных объектах электроиндуктивным методом по изменению удельной электрической проводимости в зоне дефекта, заполненного пенетрантом |
|
Капиллярно- магнитопорошковый |
KM |
Обнаружение дефектов (поверхностных отдельно от подповерхностных) в намагничиваемых ферромагнитных объектах по индикаторному следу, образованному проявителем, содержащим ферромагнитный порошок, и индикаторным пенетрантом |
|
Капиллярно-радиационный излучения |
КР |
Обнаружение дефектов по наличию ионизирующего излучения в зоне дефекта, заполненного радиоактивным пенетрантом |
|
Капиллярно-радиационный поглощения |
КП |
Обнаружение дефектов по поглощению ионизирующего излучения в зоне дефекта, заполненного пенетрантом, поглощающим излучение |
4.7.1. Класс чувствительности и освещение объектов контроля.
Класс чувствительности контроля определяют в зависимости от минимального размера выявленных дефектов в соответствии с табл.4.
Таблица 4
Класс чувствительности |
Минимальный размер (ширина раскрытия) дефектов, мкм |
I |
Менее 1 |
II |
От 1 до 10 |
III |
От 10 до 100 |
IV |
От 100 до 500 |
Технологический |
Не нормируют |
Класс чувствительности, объем, периодичность и нормы оценки качества устанавливает разработчик объекта контроля или материала, подлежащего контролю.
4.7.1.1. При цветном и ахроматическом методах капиллярной дефектоскопии с визуальным способом выявления дефектов следует применять комбинированное освещение (к общему освещению добавляют местное). Применять одно общее освещение допускается в случаях, когда по условиям технологии использовать местное освещение невозможно. На стационарных рабочих местах применять только местное освещение не допускается.
В качестве источников света следует использовать люминесцентные лампы преимущественно типа ЛБ или ЛХБ, а также лампы накаливания. Применять газоразрядные лампы высокого давления (ДРЛ, металлогалогенные) не допускается.
Для ограничения пульсации освещенности необходимо применять двухламповые, четырехламповые и т.д. стандартные светильники с аппаратами включения типа УБИ и УБК, либо предусматривать включение на различные фазы электросети светильников (ламп).
Допускается применять одноламповые люминесцентные светильники для местного освещения при наличии преобразователей на повышенную частоту.
В целях предупреждения ослепленности для местного освещения следует использовать светильники с непросвечивающими отражателями, отвечающие СНиП II-4-79*, утвержденными Госстроем СССР.
_______________
* Действует СНиП 23-05-95, здесь и далее по тексту. - Примечание "Free Of Charge Document".
Для ограничения отраженной блескости должны быть предусмотрены меры в соответствии с приложением 7 СНиП II-4-79.
Значение освещенности выбирают в соответствии с СНиП II-4-79 в зависимости от ширины протяженного индикаторного следа, образующегося при выявлении минимальных для заданного класса чувствительности дефектов, и их контраста на фоне проявителя (или объекта в случае отсутствия проявителя).
Значения освещенностей для выявления протяженных индикаторных следов дефектов типа трещин в зависимости от класса чувствительности приведены в табл.5.
Таблица 5
Класс чувствительности |
Условия визуального выявления протяженных индикаторных следов дефектов (соотношение ширины следа и ширины раскрытия дефекта 10:1) |
|||||
Ультрафиолетовая облученность при использовании люминесцентных методов (Л, ЛЦ, ФЛ, ФЛЦ) |
Освещенность, лк, при использовании цветных и яркостных методов (Ц, Я, ФЦ) для ламп |
|||||
люминесцентных |
накаливания |
|||||
отн. ед. |
мкВт/см |
комбини- рованная |
общая |
комбини- рованная |
общая |
|
I |
300 |
3000 |
2500* |
750 |
2000* |
500 |
II |
||||||
III |
150±50 |
1500±500 |
2000 |
500 |
1500 |
400 |
IV |
75±25 |
750±250 |
750 |
300 |
500 |
200 |
Технологический |
До 50 |
До 500 |
________________
* При цветном методе с диффузионным проявлением допускается принимать значения соответственно 4000 и 3000 лк.
Примечания:
1. В нормативно-технической документации допускается разделять классы чувствительности на подклассы, обозначая их, например, внутри класса II - IIа, IIб и т.д.
2. Общее освещение в системе комбинированного должно создавать 10% нормируемого для комбинированного освещения, но не ниже 150 лк при использовании люминесцентных ламп.
4.7.1.2. При люминесцентном методе капиллярной дефектоскопии с визуальным способом обнаружения дефектов следует использовать ультрафиолетовое излучение с длиной волны 315-400 нм.
4.7.1.2.1. Ультрафиолетовую облученность контролируемой поверхности измеряют интегрально в энергетических единицах.
Допускается применять косвенную систему интегральной оценки ультрафиолетовой облученности по измерению освещенности, создаваемой люминесцентным экраном, изготовленным согласно приложению 3. За относительную единицу интегральной облученности принимают облученность, при которой люминесцирующий экран излучает световой поток, создающий освещенность 1 лк. Методика определения ультрафиолетовой облученности и ее видимой составляющей от ультрафиолетового облучателя приведена в приложении 4.
Значения ультрафиолетовой облученности для выявления протяженных индикаторных следов дефектов типа единичных трещин, глубина которых значительно более ширины раскрытия, приведены в табл.5.
4.7.1.2.2. Участок визуального контроля в ультрафиолетовом излучении должен быть оснащен светильниками отраженного или рассеянного светораспределения, обеспечивающими освещенность 10 лк по помещению. Прямая подсветка зоны контроля и глаз оператора от источников видимого света не допускается. На контролируемой поверхности допускается освещенность от ультрафиолетового облучателя не более 30 лк.
4.7.1.3. Чувствительность определяют на стандартных образцах предприятий, приведенных в ГОСТ 28369-89.
Размеры дефектов в стандартных образцах определяют металлографическим или другими методами анализа.
4.7.1.4. Значения задаваемой ультрафиолетовой облученности могут быть меньше значений, указанных в табл.5 для соответствующих классов чувствительности, при:
исключении постороннего освещения и освещенности от ультрафиолетового облучателя, измеренной согласно приложению 4, не более 10 лк;
адаптации контролера (дефектоскописта) к темноте, нормированной по продолжительности;
регламентированном по скорости визуальном поиске дефектов;
применении оптических средств наблюдения (луп, микроскопов).
4.7.1.3, 4.7.1.4. (Измененная редакция, Изм. N 2).
4.7.1.5. Установленный класс чувствительности достигается при:
использовании аттестованного набора дефектоскопических материалов, обладающего требуемой чувствительностью;
соблюдении заданной технологической последовательности операций;
соответствии атмосферных условий (температуры, влажности, скорости воздуха) требуемым для правильного использования дефектоскопических материалов и аппаратуры;
соответствии шероховатости поверхности объектов контроля требованиям набора дефектоскопических материалов;
удалении загрязнений с поверхности объектов контроля и обеспечении доступа пенетранта в полости дефектов;
выявлении дефектов конкретных типов;
условии обучения контролера (дефектоскописта) технологии контроля и получении допуска к работе по выполнению капиллярной дефектоскопии.
4.8. Окончательная очистка объектов представляет собой один или сочетание нескольких технологических приемов удаления проявителя, а, при необходимости, и удаления остатков индикаторного пенетранта.
Способы удаления проявителя приведены ниже:
протирка - удаление проявителя салфетками с применением или без применения воды либо органических растворителей;
промывка - удаление промывкой в воде или органических растворителях с необходимыми добавками и применением вспомогательных средств (щетки, ветоши, губки);
ультразвуковая обработка - удаление проявителя растворителем или моющим раствором при воздействии на него ультразвука;
анодная обработка - электрохимическая обработка водными растворами химических реактивов с одновременным воздействием электрического тока;
обдувка - обработка объекта, покрытого проявителем, абразивным материалом в виде песка, крошки или гидроабразивной смесью;
отклеивание - отделение ленты пленочного проявителя с индикаторным следом дефекта от контролируемой поверхности;
выжигание - удаление проявителя нагреванием объекта до температуры сгорания проявителя;
отслоение - отделение проявителя в виде пленки в жидкостях, не растворяющих проявитель.
4.9. Объекты, прошедшие капиллярный контроль, следует подвергать антикоррозионной защите в соответствии с требованиями ГОСТ 9.028-74.